Add like
Add dislike
Add to saved papers

The blue light hazard and its use on the evaluation of photochemical risk for domestic lighting. An in vivo study.

Environment International 2024 Februrary 3
BACKGROUND: Nowadays artificial light highly increases human exposure to light leading to circadian rhythm and sleep perturbations. Moreover, excessive exposure of ocular structures to photons can induce irreversible retinal damage. Meta-analyses showed that sunlight exposure influences the age of onset and the progression of Age-related macular degeneration (AMD), the leading cause of blindness in people over fifty-year old. Currently, the blue-light hazard (BLH) curve is used in the evaluation of the phototoxicity of a light source for domestic lighting regulations.

OBJECTIVES: Here, we analyze the phototoxicity threshold in rats and investigate the role played by the light spectrum, assessing the relevance of the use of the BLH-weighting to define phototoxicity.

METHODS: We exposed albino rats to increasing doses of blue and white light, or to lights of different colors to evaluate the impact of each component of the white light spectrum on phototoxicity. Cellular mechanisms of cell death and cellular stress induced by light were analyzed.

RESULTS: Our results show that the phototoxicity threshold currently accepted for rats is overestimated by a factor of 50 when considering blue light and by a factor of 550 concerning white light. This is the result of the toxicity induced by green light that increases white light toxicity by promoting an inflammatory response. The content of green in white light induces 8 fold more invasion of macrophages in the retina than the content of blue light. Moreover, the use of BLH-weighting does not evaluate the amount of red radiations contained in white light that mitigates damage by inhibiting the nuclear translocation of L-DNase II and reducing by 33% the number of TUNEL-positive cells.

DISCUSSION: These findings question the current methods to determine the phototoxicity of a light source and show the necessity to take into account the entire emission spectrum. As current human phototoxicity thresholds were estimated with the same methods used for rats, our results suggest that they might need to be reconsidered.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app