Add like
Add dislike
Add to saved papers

IL-17A deficiency alleviates cerebral ischemia-reperfusion injury via activating ERK/MAPK pathway in hippocampal CA1 region.

Brain Research Bulletin 2024 Februrary 2
Cognitive impairment is a major complication of cerebral ischemia-reperfusion (CIR) injury and has an important impact on the quality of life of patients. However, the precise mechanisms underlying cognitive impairment after CIR injury remain elusive. In the current study, we investigated the role of interleukin 17 A (IL-17A) on CIR injury-induced cognitive impairment in wild-type and IL-17A knockout mice using RNA sequencing analysis, neurological assessments, Golgi-Cox staining, dendritic spine analysis, immunofluorescence assay, and western blot analysis. RNA sequencing identified 195 CIR-induced differentially expressed genes (83 upregulated and 112 downregulated), highlighting several enriched biological processes (negative regulation of phosphorylation, transcription regulator complex, and receptor ligand activity) and signaling pathways (mitogen-activated protein kinase [MAPK], tumor necrosis factor, and IL-17 signaling pathways). We also injected adeno-associated virus into the bilateral hippocampal CA1 regions of CIR mice to upregulate or downregulate cyclic AMP response element-binding protein. IL-17A knockout activated the extracellular signal-regulated kinase (ERK)/MAPK signaling pathway and further improved synaptic plasticity, structure, and function in CIR mice. Together, our findings suggest that IL-17A deficiency alleviates CIR injury by activating the ERK/MAPK signaling pathway and enhancing hippocampal synaptic plasticity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app