Add like
Add dislike
Add to saved papers

Muscle-Derived Stem/Progenitor Cells Ameliorate Acute Kidney Injury in Rats through the Anti-Apoptotic Pathway and Demonstrate Comparable Effects to Bone Marrow Mesenchymal Stem Cells.

Medicina 2023 December 29
Background and Objectives : To date, the therapeutic potential of skeletal muscle-derived stem/progenitor cells (MDSPCs) for acute kidney injury (AKI) has only been evaluated by our research group. We aimed to compare MDSPCs with bone marrow mesenchymal stem cells (BM-MSCs) and evaluate their feasibility for the treatment of AKI. Materials and Methods : Rats were randomly assigned to four study groups: control, GM (gentamicin) group, GM+MDSPCs, and GM+BM-MSCs. AKI was induced by gentamicin (80 mg/kg/day; i.p.) for 7 consecutive days. MDSPCs and BM-MSCs were injected 24 h after the last gentamicin injection. Kidney parameters were determined on days 0, 8, 14, 21, and 35. Results : MDSPCs and BM-MSCs accelerated functional kidney recovery, as reflected by significantly lower serum creatinine levels and renal injury score, higher urinary creatinine and creatinine clearance levels ( p < 0.05), lower TUNEL-positive cell number, and decreased KIM-1 and NGAL secretion in comparison to the non-treated AKI group. There was no significant difference in any parameters between the MDSPCs and BM-MSCs groups ( p > 0.05). Conclusions : MDSPCs and BM-MSCs can migrate and incorporate into injured renal tissue, resulting in a beneficial impact on functional and morphological kidney recovery, which is likely mediated by the secretion of paracrine factors and an anti-apoptotic effect. MDSPCs were found to be non-inferior to BM-MSCs and therefore can be considered as a potential candidate strategy for the treatment of AKI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app