Add like
Add dislike
Add to saved papers

Cell division angle predicts the level of tissue mechanics that tune the amount of cerebellar folding.

Development 2024 January 23
Modeling has proposed that the amount of neural tissue folding is set by the level of differential-expansion between tissue layers and that the wavelength is set by the thickness of the outer layer. Here we used inbred mouse strains with distinct amounts of cerebellar folding to investigate these predictions. We identified distinct critical periods where the folding amount diverges between the two strains. In this period, regional changes in the level of differential-expansion between the external granule layer (EGL) and underlying core correlate with the folding amount in each strain. Additionally, the thickness of the EGL varies regionally during the critical period alongside corresponding changes in wavelength. While the number of SHH-expressing Purkinje cells predicts the folding amount, the proliferation rate in the EGL is the same between the strains. However, regional changes in the cell division angle within the EGL predicts both the tangential-expansion and thickness of the EGL. Cell division angle is likely a tunable mechanism whereby both the level of differential-expansion along the perimeter and thickness of the EGL are regionally tuned to set the amount and wavelength of folding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app