Add like
Add dislike
Add to saved papers

The effect of rear bicycle light configurations on drivers' perception of cyclists' presence and proximity.

The optimal cycle light configuration for maximizing cyclists' conspicuity to drivers is not clear. Advances in sensor technology has led to the development of 'reactive' cycle lights that detect changes in the environment and consequently increase their flashing speed and brightness in risky situations - for example, when a rearward car is approaching - but no research has examined the effect of such lights on driver perception. The aim of the present study is to compare different cycle light configurations, including 'reactive' light technology, on drivers' ability to detect cyclists and estimate their proximity. We recruited 32 drivers to participate in two experiments, in which they viewed life-size real-world stimuli filmed from a driver's perspective in daytime and at dusk. The footage showed a cyclist on a bicycle with a rear light mounted on the seat post, in various configurations: static light, steady flashing, reactive flashing and no light. In Experiment 1, the drivers were required to detect the presence or absence of a cyclist on the road ahead as quickly as possible. In Experiment 2, they were required to estimate the distance of the cyclist from their vehicle, and to rate their confidence in their estimates. Experiment 1 revealed that drivers were quicker to detect the cyclist's presence in all rear cycle light conditions relative to the no light condition, but there were no differences in speed or accuracy across rear light conditions. Experiment 2 showed that drivers were more accurate in estimating the cyclist's proximity in the steady flashing and reactive flashing conditions, compared to static and no light conditions. Drivers were also more confident in their judgements in all rear light conditions compared to the no light condition. In conclusion, flashing rear cycle lights, regardless of reactive technology, enhanced drivers' perception of a cyclist ahead, notably in terms of their judgements of distance to that cyclist. Further investigation is needed to fully understand the impact of cycle light technology on driver perception, as well as the use of drivers' distance-to-cyclist estimates as an index of cyclists' cognitive conspicuity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app