Add like
Add dislike
Add to saved papers

Using CombiCells, a platform for titration and combinatorial display of cell surface ligands, to study T-cell antigen sensitivity modulation by accessory receptors.

EMBO Journal 2024 January
Understanding cellular decisions due to receptor-ligand interactions at cell-cell interfaces has been hampered by the difficulty of independently varying the surface density of multiple different ligands. Here, we express the synthetic binder protein SpyCatcher, designed to form spontaneous covalent bonds with interactors carrying a Spytag, on the cell surface. Using this, we show that addition of different concentrations and combinations of native Spytag-fused ligands allows for the combinatorial display of ligands on cells within minutes. We use this combinatorial display of cell surface ligands-called CombiCells-to assess T cell antigen sensitivity and the impact of T cell co-stimulation and co-inhibition receptors. We find that the T cell receptor (TCR) displayed greater sensitivity to peptides on major-histocompatibility complexes (pMHC) than synthetic chimeric antigen receptor (CARs) and bi-specific T cell engager (BiTEs) display to their target antigen, CD19. While TCR sensitivity was greatly enhanced by CD2/CD58 interactions, CAR sensitivity was primarily but more modestly enhanced by LFA-1/ICAM-1 interactions. Lastly, we show that PD-1/PD-L1 engagement inhibited T cell activation triggered solely by TCR/pMHC interactions, as well as the amplified activation induced by CD2 and CD28 co-stimulation. The ability to easily produce cells with different concentrations and combinations of ligands should accelerate the study of receptor-ligand interactions at cell-cell interfaces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app