Add like
Add dislike
Add to saved papers

Fluoranthene adsorption by graphene oxide and magnetic chitosan composite (mCS/GO).

The oil industry faces the challenge of reducing its high polluting potential, due to the presence of aromatic pollutants, such as polycyclic aromatic hydrocarbons (PAHs). Efforts have been made to mitigate the impact of PAHs in industry through the development of detection technologies and the implementation of mitigation strategies. This study presents the adsorption of fluoranthene, through a magnetic composite of graphene oxide and chitosan as a method of remediation of produced water. The efficiency of the process was evaluated through kinetic, equilibrium, thermodynamic, and characterization analyses. The nanocomposite was able to remove 90.9% of FLT after 60 min and showed a maximum adsorption capacity of 28.22 mg/g, demonstrating that they can be implemented to remove fluoranthene. Kinetic and equilibrium experimental data showed that physisorption is the predominant adsorptive mechanism; however, the process is also influenced by chemisorption, which occurs through electrostatic interactions between the surface of the material and the adsorbate. The thermodynamic study showed that fluoranthene and graphene composite have high affinity, and that the adsorption is exothermic and spontaneous. The results presented in this paper indicate that the magnetic composite is a potential and sustainable adsorbent for fluoranthene remediation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app