Add like
Add dislike
Add to saved papers

Neural Mechanisms of Visual-Spatial Judgment Behavior under Visual and Auditory Constraints: Evidence from an Electroencephalograph during Handgun Shooting.

Brain Sciences 2023 December 11
Light and noise are important factors affecting shooting performance, and shooters can exhibit physiological processes that differ from normal shooting when they are subjected to disturbed visual and auditory conditions. The purpose of this study was to explore the neural mechanism of shooting preparation in skilled shooters with visual and auditory limitations. We designed an experiment and recorded the electroencephalograph (EEG) and shooting performance indexes of 40 individuals skilled in marksmanship during the shooting preparation stage under three conditions: low light, noise interference, and a normal environment. EEG relative band power features and event-related desynchronization/synchronization (ERD/ERS) features were extracted and analyzed. The results showed that (1) the average score of the shooters was 8.55 under normal conditions, 7.71 under visually restricted conditions, and 8.50 under auditorily restricted conditions; (2) the relative EEG band power in the frontal lobe (Fp1, Fp2), frontal lobe (F4, F8), left temporal region (T7), central lobe (CP2), and parietal lobe (P3, PO3) in the theta band was significantly lower than in the other two environments ( p < 0.05), and there was no significant difference between the power intensity of the shooter in the noisy environment and that in the normal environment; and (3) in the low-light environment, a significant negative correlation was found between the central region, the left and right temporal regions, and the parietal lobe ( p < 0.05). These findings provide a basis for further understanding neural mechanisms in the brain during the shooting preparation phase under visually and auditorily restricted conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app