Add like
Add dislike
Add to saved papers

Stereoselective cardiotoxic effects of metconazole on zebrafish (Danio rerio) based on AGE-RAGE signalling pathway.

Metconazole (MEZ) is a novel chiral triazole fungicide that is widely used to prevent and control soil-borne fungal pathogens and other fungal diseases. However, it has a long half-life in aquatic environments and thus poses potential environmental risks. This study evaluates the acute and stereoselective cardiotoxicity of MEZ in zebrafish (Danio rerio) embryos. In addition, transcriptomics, real-time quantitative PCR, enzyme activity determination, and molecular docking are performed to evaluate the molecular mechanisms underlying the cardiotoxicity of MEZ in zebrafish. MEZ decreases the heart rate while increasing the pericardial oedema rate; additionally, it induces stereoselective cardiotoxicity. 1S,5S-MEZ exhibits stronger cardiotoxicity than 1R,5R-MEZ. Furthermore, MEZ increases the expression of Ahr-associated genes and the transcription factors il6st, il1b, and AP-1. Heart development-related genes, including fbn2b, rbm24b, and tbx20 are differentially expressed. MEZ administration alters the activities of catalase, peroxidase, and glutathione-S-transferase in zebrafish larvae. Molecular docking indicates that 1R,5R-MEZ binds more strongly to the inhibitor-binding sites of p38 in the AGE-RAGE signalling pathway than to other MEZ enantiomers. Studies conducted in vivo and in silico have established the enantioselective cardiotoxicity of MEZ and its underlying mechanisms, highlighting the need to evaluate the environmental risk of chiral MEZ in aquatic organisms at the enantiomeric level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app