Add like
Add dislike
Add to saved papers

The quest for optimal femoral torsion angle measurements: a comparative advanced 3D study defining the femoral neck axis.

PURPOSE: There is high variability in femoral torsion, measured on two-dimensional (2D) computed tomography (CT) scans. The aim of this study was to find a reliable three-dimensional (3D) femoral torsion measurement method, assess the influence of CAM deformity on femoral torsion measurement, and to promote awareness for the used measurement method.

METHODS: 3D models of 102 dry femur specimens were divided into a CAM and non-CAM group. Femoral torsion was measured by one 2D-CT method described by Murphy et al. (method 0) and five 3D methods. The 3D methods differed in strategies to define the femoral neck axis. Method 1 is based on an elliptical least-square fit at the middle of the femoral neck. Methods 2 and 3 defined the centre of mass of the entire femoral neck and of the most cylindrical part, respectively. Methods 4 and 5 were based on the intersection of the femoral neck with a 25% and 40% enlarged best fit sphere of the femoral head.

RESULTS: 3D methods resulted in higher femoral torsion measures than the 2D method; the mean torsion for method 0 was 8.12° ± 7.30°, compared to 9.93° ± 8.24° (p < 0.001), 13.21° ± 8.60° (p < 0.001), 8.21° ± 7.64° (p = 1.00), 9.53° ± 7.87° (p < 0.001) and 10.46° ± 7.83° (p < 0.001) for methods 1 to 5 respectively. In the presence of a CAM, torsion measured with method 4 is consistently smaller than measured with method 5.

CONCLUSION: 2D measurement might underestimate true femoral torsion and there is a difference up to 5°. There is a tendency for a higher mean torsion in hips with a CAM deformity. Methods 4 and 5 are the most robust techniques. However, method 4 might underestimate femoral torsion if a CAM deformity is present. Since method 5 is independent of a CAM deformity, it is the preferred technique to define expected values of torsion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app