Add like
Add dislike
Add to saved papers

Facile and Sensitive Acetylene Black-Based Electrochemical Sensor for the Detection of Imatinib.

A facile and sensitive electrochemical sensor for determining imatinib (IMA) was constructed by modifying a glassy carbon electrode (GCE) with a nanocarbon material, acetylene black (AB). The electrochemical behavior of IMA on the prepared GCE/AB was studied using electrochemical techniques, namely, differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy. The direct determination of IMA by the GCE/AB sensor was accomplished using DPV under optimized conditions. The method verification showed that the oxidation peak current was proportional to the concentrations of IMA in the linear ranges of 0.01-0.5 and 0.5-4  μ M, with correlation coefficients of 0.9856 and 0.9946, respectively. The limit of detection of the GCE/AB sensor was 0.15 nM. Moreover, the GCE/AB sensor showed good precision and accuracy. Finally, the GCE/AB sensor was successfully applied to determine IMA in human serum samples, and the recoveries were satisfactory.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app