Add like
Add dislike
Add to saved papers

Modulation of the capillary leakage by exogenous albumin in a rat model of endothelial glycocalyx damage.

BACKGROUND: Endothelial glycocalyx (EG) plays a crucial role in maintaining the plasma proteins within the intravascular space.

OBJECTIVE: We studied whether exogenous albumin protects the EG in an experimental model of EG enzymatic damage in rats.

METHODS: Rats were divided into three groups of 10 animals that received (1) Evans blue (2) Evans blue + hyaluronidase, or (3) Evans blue + hyaluronidase + 20% human albumin via the tail vein. Spectrophotometric analysis was performed 2 h later to quantify the leakage of Evans blue-labeled albumin into the heart, lungs, brain, kidneys, liver, small intestine, spleen, and skeletal muscle.

RESULTS: Administration of hyaluronidase numerically increased the capillary leakage of Evans blue in all examined tissues. Co-administration of albumin decreased the leakage of albumin in all tissues except the heart. In the lungs, the ratio between the absorbance and dry organ weight decreased from 5.3 ± 2.4 to 1.7 ± 0.5 (mean ± SD) (P <  0.002), and in the liver, the absorbance decreased from 2.2 ± 0.7 to 1.5 ± 0.4 (P <  0.011).

CONCLUSION: Exogenous albumin decreased the capillary leakage of albumin which was interpreted as a sign of maintained EG integrity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app