Add like
Add dislike
Add to saved papers

Adult-onset neurodegeneration in XMEN disease.

BACKGROUND: XMEN (X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV), and N-linked glycosylation defect) disease results from loss-of-function mutations in MAGT1, a protein that serves as a magnesium transporter and a subunit of the oligosaccharyltransferase (OST) complex. MAGT1 deficiency disrupts N-linked glycosylation, a critical regulator of immune function. XMEN results in recurrent EBV infections and a propensity for EBV-driven malignancies. Although XMEN is recognized as a systemic congenital disorder of glycosylation (CDG), its neurological involvement is rare and poorly characterized.

CASES: Two young men, ages 32 and 33, are described here with truncating mutations in MAGT1, progressive behavioral changes, and neurodegenerative symptoms. These features manifested well into adulthood. Both patients still presented with many of the molecular and clinical hallmarks of the typical XMEN patient, including chronic EBV viremia and decreased expression of NKG2D.

CONCLUSION: While previously unrecognized, XMEN may include prominent and disabling CNS manifestations. How MAGT1 deficiency directly or indirectly contributes to neurodegeneration remains unclear. Elucidating this mechanism may contribute to the understanding of neurodegeneration more broadly.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app