Add like
Add dislike
Add to saved papers

Circulating microRNAs as novel biomarkers for measuring the potency of ginger extract against cyclophosphamide toxicity in rat renal tissues: molecular and histopathological study.

OBJECTIVE: This study aims to explore underlying molecular variations in the expression of miRNAs in kidney tissues of ginger-treated and non-treated cyclophosphamide (CP)-intoxicated rats.

MATERIALS AND METHODS:   A total of 40 adult male Wistar rats were randomly divided into four groups of 10 each: Group I (control: received normal food and water), Group II (received ginger at a dose of 300 mg/kg), Group III (received CP 75 mg/kg, i.p.), and Group IV (received the same dose of CP and ginger extract).  Rats received a single injection of 75 mg/kg CP on days 3, 4, 5, 19, 20, and 21. In CP-intoxicated rats, the treatment with ginger extract at a dose of 300 mg/kg was received by oral gavage starting seven days before CP and continuing throughout the duration of the experiment for four weeks. Molecular variations in the expression of miRNAs, apoptotic genes, histological kidney damage, and abnormal kidney function in control, ginger, and CP-intoxicated rats were identified by using real-time RT-PCR Analysis, immunohistochemical, and colorimetric assays. In addition, HPLC analysis and liquid chromatography spectrophotometry analysis using Diphenyl-1-picrylhydrazyl (DPPH) radical, and Β-Carotene-linoleic acid reagents were applied respectively for in-vitro screening of phytoconstituents and antioxidant activity for ginger extract.

RESULTS: The kidney tissues of CP-intoxicated rats displayed an increase in lipid peroxidation marker malonaldehyde (MDA), DNA damage, and fibrosis markers like hyaluronic acid (HA) and hydroxyproline Hypx) with a decrease in the superoxide dismutase (SOD) and total antioxidant capacity (TAC). In addition, molecular expressions of mRNA fibrotic genes such as collagen, type 1, alpha 1 (COL1A1), and α-smooth muscle actin (αSMA). Molecular expressions of levels of B-cell lymphoma 2 (BCl-2) mRNA gene were down-regulated, and the expression of mRNA apoptotic; BCL2 associated X gene (Bax), caspase-3, Bax/BCl-2 ratio genes were significantly up-regulated respectively. Moreover, cellular oxidative genes, erythroid 2-related factor (Nrf2), and heme oxygenase-1 (HO-1) were down-regulated, respectively. The miR-155-5p, miR-34a-5p, miR-21-5p significantly increased while the miR-193b-3p, miR-455-3p, and miR-342-3p significantly decreased. Ginger also increased the expression of Nrf2, HO-1, and BCl-2 genes in the kidneys of rats induced with CP. In addition, active phytoconstituents, particularly 6]]-shogaol and 6]]-gingerol, were significantly identified in ginger extract using HPLC analysis. Antioxidant activity of these active metabolites were shown to be higher against in vitro free radicals (DPPH and Β-Carotene-linoleic acid), suggesting the potential antioxidant and antiapoptotic properties of ginger against CP-toxicity.

CONCLUSIONS: Treatment with ginger in rats induced with CP resulted in significant improvement in the expression of certain molecular miRNAs. The kidney tissues of these rats showed a marked decrease in the expression of miR-155-5p, miR-34a-5p, and miR-21-5p, while the levels of miR-193b-3p, miR-455-3p, and miR-342-3p were observed to increase significantly. In conclusion, ginger can protect rats from CP-induced nephrotoxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app