Add like
Add dislike
Add to saved papers

Single-Cell Atlas of Neonatal Mouse Hearts Reveals an Unexpected Cardiomyocyte.

BACKGROUND: Single-cell RNA sequencing is widely used in cancer research and organ development because of its powerful ability to analyze cellular heterogeneity. However, its application in cardiomyocytes is dissatisfactory mainly because the cardiomyocytes are too large and fragile to withstand traditional single-cell approaches.

METHODS AND RESULTS: Through designing the isolation procedure of neonatal mouse cardiac cells, we provide detailed cellular atlases of the heart at single-cell resolution across 4 different stages after birth. We have obtained 10 000 cardiomyocytes; to our knowledge, this is the most extensive reference framework to date. Moreover, we have discovered unexpected erythrocyte-like cardiomyocyte-terminal cardiomyocytes, comprising more than a third of all cardiomyocytes. Only a few genes are highly expressed in these cardiomyocytes. They are highly differentiated cardiomyocytes that function as contraction pumps. In addition, we have identified 2 cardiomyocyte-like conducting cells, lending support to the theory that the sinoatrial node pacemaker cells are specialized cardiomyocytes. Notably, we provide an initial blueprint for comprehensive interactions between cardiomyocytes and other cardiac cells.

CONCLUSIONS: This mouse cardiac cell atlas improves our understanding of cardiomyocyte heterogeneity and provides a valuable reference in response to varying physiological conditions and diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app