Add like
Add dislike
Add to saved papers

Hypoxia-inducible factor-prolyl hydroxylase inhibitor Roxadustat (FG-4592) reduces renal fibrosis in Dahl salt-sensitive rats.

Journal of Hypertension 2023 November 29
OBJECTIVE: Although hypoxia-inducible factor-prolyl hydroxylase (HIF-PH) inhibitors have been developed for the treatment of renal anemia, their effects on cardiac and renal dysfunction remain unknown. We previously reported on Dahl salt-sensitive rats, in a rat model of salt-sensitive hypertension, that exhibited anemia and impaired expression of duodenal iron transporters after the development of hypertensive cardiac and renal dysfunction. Therefore, we investigated the effects of Roxadustat (FG-4592), an HIF-PH inhibitor, on anemia, iron regulation, and cardiac and renal dysfunction in Dahl salt-sensitive rats.

METHODS: Six-week-old male Dahl salt-sensitive rats were fed a normal or high-salt diet for 8 weeks. A further subset of Dahl salt-sensitive rats, that were fed a high-salt diet, was administered Roxadustat for 8 weeks.

RESULTS: Dahl salt-sensitive rats fed a high-salt diet developed hypertension, cardiac and renal dysfunction, and anemia after 8 weeks of feeding. Roxadustat increased hemoglobin and serum erythropoietin levels in Dahl salt-sensitive rats fed a high-salt diet. With regard to the iron-regulating system, Roxadustat lowered hepatic hepcidin gene expression and increased the gene expression of duodenal iron transporters, such as cytochrome b and divalent metal transporter 1 , in Dahl salt-sensitive rats fed a high-salt diet. Roxadustat did not affect the development of hypertension and cardiac hypertrophy in Dahl salt-sensitive rats with a high-salt diet; however, Roxadustat treatment attenuated renal fibrosis in these rats.

CONCLUSIONS: Roxadustat ameliorated anemia with affecting the gene expression of the iron-regulating system, and did not affect cardiac hypertrophy but attenuated renal fibrosis in Dahl salt-sensitive rats fed a high-salt diet.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app