Add like
Add dislike
Add to saved papers

Intestine-Targeted Explosive Hydrogel Microsphere Promotes Uric Acid Excretion for Gout Therapy.

Advanced Materials 2024 January
Uric acid metabolism disorder triggers metabolic diseases, especially gout. However, increasing uric acid excretion remains a challenge. Here, an accelerative uric acid excretion pathway via an oral intestine-explosive hydrogel microsphere merely containing uricase and dopamine is reported. After oral administration, uricase is exposed and immobilized on intestinal mucosa along with an in situ dopamine polymerization via a cascade reaction triggered by the intestinal specific environment. By this means, trace amount of uricase is required to in situ up-regulate uric acid transporter proteins of intestinal epithelial cells, causing accelerated intestinal uric acid excretion. From in vitro data, the uric acid in fecal samples from gout patients could be significantly reduced by up to 37% by the mimic mucosa-immobilized uricase on the isolated porcine tissues. Both hyperuricemia and acute gouty arthritis in vivo mouse models confirm the uric acid excretion efficacy of intestine-explosive hydrogel microspheres. Fecal uric acid excretion is increased around 30% and blood uric acid is reduced more than 70%. In addition, 16S ribosomal RNA sequencing showed that the microspheres optimized intestinal flora composition as well. In conclusion, a unique pathway via the intestine in situ regulation to realize an efficient uric acid intestinal excretion for gout therapy is developed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app