Add like
Add dislike
Add to saved papers

Calibration-free blood pressure estimation based on a convolutional neural network.

Psychophysiology 2023 November 17
In this study, we conducted research on a deep learning-based blood pressure (BP) estimation model suitable for wearable environments. To measure BP while wearing a wearable watch, it needs to be considered that computing power for signal processing is limited and the input signals are subject to noise interference. Therefore, we employed a convolutional neural network (CNN) as the BP estimation model and utilized time-series electrocardiogram (ECG) and photoplethysmogram (PPG) signals, which are quantifiable in a wearable context. We generated periodic input signals and used differential and thresholding methods to decrease noise in the preprocessing step. We then applied a max-pooling technique with filter sizes of 2 × 1 and 5 × 1 within a 3-layer convolutional neural network to estimate BP. Our method was trained, validated, and tested using 2.4 million data samples from 49 patients in the intensive care unit. These samples, totaling 3.1 GB were obtained from the publicly accessible MIMIC database. As a result of a test with 480,000 data samples, the average root mean square error in BP estimation was 3.41, 5.80, and 2.78 mm Hg in the prediction of pulse pressure, systolic BP (SBP), and diastolic BP (DBP), respectively. The cumulative error percentage less than 5 mm Hg was 68% and 93% for SBP and DBP, respectively. In addition, the cumulative error percentage less than 15 mm Hg was 98% and 99% for SBP and DBP. Subsequently, we evaluated the impact of changes in input signal length (1 cycle vs. 30 s) and the introduction of noise on BP estimation results. The experimental results revealed that the length of the input signal did not significantly affect the performance of CNN-based analysis. When estimating BP using noise-added ECG signals, the mean absolute error (MAE) for SBP and DBP was 9.72 and 6.67 mm Hg, respectively. Meanwhile, when using noise-added PPG signals, the MAE for SBP and DBP was 26.85 and 14.00 mm Hg, respectively. Therefore, this study confirmed that using ECG signals rather than PPG signals is advantageous for noise reduction in a wearable environment. Besides, short sampling frames without calibration can be effective as input signals. Furthermore, it demonstrated that using a model suitable for information extraction rather than a specialized deep learning model for sequential data can yield satisfactory results in BP estimation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app