Add like
Add dislike
Add to saved papers

Deep Transfer Learning for Ethnically Distinct Populations: Prediction of Refractive Error Using Optical Coherence Tomography.

Ophthalmology and Therapy 2023 November 14
INTRODUCTION: The mismatch between training and testing data distribution causes significant degradation in the deep learning model performance in multi-ethnic scenarios. To reduce the performance differences between ethnic groups and image domains, we built a deep transfer learning model with adaptation training to predict uncorrected refractive errors using posterior segment optical coherence tomography (OCT) images of the macula and optic nerve.

METHODS: Observational, cross-sectional, multicenter study design. We pre-trained a deep learning model on OCT images from the B&VIIT Eye Center (Seoul, South Korea) (N = 2602 eyes of 1301 patients). OCT images from Poona Eye Care (Pune, India) were chronologically sorted into adaptation training data (N = 60 eyes of 30 patients) for transfer learning and test data (N = 142 eyes of 71 patients) for validation. Deep learning models were trained to predict spherical equivalent (SE) and mean keratometry (K) values via transfer learning for domain adaptation.

RESULTS: Both adaptation models for SE and K were significantly better than those without adaptation (P < 0.001). In myopia/hyperopia classification, the model trained on circular optic disc OCT images yielded the best performance (accuracy = 74.7%). It also performed best in estimating SE with the lowest mean absolute error (MAE) of 1.58 D. For classifying the degree of corneal curvature, the optic nerve vertical algorithm performed best (accuracy = 65.7%). The optic nerve horizontal model achieved the lowest MAE (1.85 D) when predicting the K value. Saliency maps frequently highlighted the retinal nerve fiber layers.

CONCLUSIONS: Adaptation training via transfer learning is an effective technique for estimating refractive errors and K values using macular and optic nerve OCT images from ethnically heterogeneous populations. Further studies with larger sample sizes and various data sources are needed to confirm the feasibility of the proposed algorithm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app