Add like
Add dislike
Add to saved papers

Upper and Lower Motor Neurons and the Skeletal Muscle: Implication for Amyotrophic Lateral Sclerosis (ALS).

The relationships between motor neurons and the skeletal muscle during development and in pathologic contexts are addressed in this Chapter.We discuss the developmental interplay of muscle and nervous tissue, through neurotrophins and the activation of differentiation and survival pathways. After a brief overview on muscular regulatory factors, we focus on the contribution of muscle to early and late neurodevelopment. Such a role seems especially intriguing in relation to the epigenetic shaping of developing motor neuron fate choices. In this context, emphasis is attributed to factors regulating energy metabolism, which may concomitantly act in muscle and neural cells, being involved in common pathways.We then review the main features of motor neuron diseases, addressing the cellular processes underlying clinical symptoms. The involvement of different muscle-associated neurotrophic factors for survival of lateral motor column neurons, innervating MyoD-dependent limb muscles, and of medial motor column neurons, innervating Myf5-dependent back musculature is discussed. Among the pathogenic mechanisms, we focus on oxidative stress, that represents a common and early trait in several neurodegenerative disorders. The role of organelles primarily involved in reactive oxygen species scavenging and, more generally, in energy metabolism-namely mitochondria and peroxisomes-is discussed in the frame of motor neuron degeneration.We finally address muscular involvement in amyotrophic lateral sclerosis (ALS), a multifactorial degenerative disorder, hallmarked by severe weight loss, caused by imbalanced lipid metabolism. Even though multiple mechanisms have been recognized to play a role in the disease, current literature generally assumes that the primum movens is neuronal degeneration and that muscle atrophy is only a consequence of such pathogenic event. However, several lines of evidence point to the muscle as primarily involved in the disease, mainly through its role in energy homeostasis. Data from different ALS mouse models strongly argue for an early mitochondrial dysfunction in muscle tissue, possibly leading to motor neuron disturbances. Detailed understanding of skeletal muscle contribution to ALS pathogenesis will likely lead to the identification of novel therapeutic strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app