Add like
Add dislike
Add to saved papers

Dimethyl fumarate treatment in relapsing remitting MS changes the inflammatory CSF protein profile by a prominent decrease in T-helper 1 immunity.

BACKGROUND: Dimethyl fumarate (DMF) is a common treatment for multiple sclerosis (MS), but its mechanisms of action are not fully understood. Targeted proteomics offers insights into effects of DMF and biomarkers for treatment responses.

OBJECTIVES: To assess influence of DMF on inflammation- and neuro-associated proteins in plasma and cerebrospinal fluid (CSF) in MS and to reveal biomarkers for predicting treatment responses.

METHODS: Using the high-sensitivity and high-specificity method of proximity extension assay (PEA), we measured 182 inflammation- and neuro-associated proteins in paired plasma (n = 28) and CSF (n = 12) samples before and after one year of DMF treatment. Disease activity was evaluated through clinical examination and MRI. Statistical tests, network analysis, and regression models were used.

RESULTS: Several proteins including T-helper 1 (Th1)-associated proteins (CXCL10, CXCL11, granzyme A, IL-12p70, lymphotoxin-alpha) were consistently decreased in CSF, while IL-7 was increased after one year of treatment. The changes in plasma protein levels did not follow the same pattern as in CSF. Logistic regression models identified potential biomarker candidates (including plexins and neurotrophins) for prediction of treatment response.

CONCLUSIONS: DMF treatment induced prominent changes in CSF proteins, consistently reducing Th1-associated pro-inflammatory proteins. Neurodegeneration-related CSF proteins were able to predict treatment response. Protein biomarkers hold promise for personalized medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app