Add like
Add dislike
Add to saved papers

Xanthohumol ameliorates cardiac injury induced by sepsis in a mice model: role of toll-like receptor 4.

Sepsis, a life-threatening condition arising from infection, often results in multi-organ failure, including cardiac dysfunction. This study investigated Xanthohumol, a natural compound, and its potential mechanism of action to enhance heart function following sepsis. A total of twenty-four adult male Swiss albino mice were allocated randomly to one of four equal groups (n=6): sham, CLP, vehicle Xanthohumol the same amount of DMSO injected IP 10 minutes before the CLP, and Xanthohumol group (0.4 mg/kg of Xanthohumol administered IP before the CLP process). Toll-like receptor 4, pro-inflammatory mediators, anti-inflammatory markers, oxidative stress indicators, apoptosis markers, and serum cardiac damage biomarkers were measured in the cardiac tissue using ELISA. Data with normal distribution were analyzed using t-test and ANOVA tests (p<0.05). In comparison to the sham group, the sepsis group had significantly higher levels of TLR-4, IL-6, TNF-α, MIF, F2-isoprostane, caspase-3, cTn-I, and CK-MB, while the pre-treated group with Xanthohumol had significantly lower levels (p<0.05) of these markers than the sepsis group. Bcl-2 showed no significant difference in Xanthohumol pre-treated group relative to the sepsis group, while IL-10 was significantly elevated. Xanthohumol dramatically reduced cardiac tissue injury (p<0.05) relative to the CLP group. By blocking the downstream signal transduction pathways of TLR-4 and NF-kB, Xanthohumol was shown to lessen cardiac damage in male mice during CLP-induced polymicrobial sepsis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app