Add like
Add dislike
Add to saved papers

Immunohistochemical analysis of renal oxidative damage in senior and geriatric cats with chronic kidney disease.

Oxidative stress is a well-known cause of chronic kidney disease (CKD). In this study, renal oxidative damage in azotaemic and non-azotaemic aged cats with naturally occurring CKD was investigated using immunohistochemistry for 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 4-hydroxynonenal (4-HNE) as markers of oxidative tissue damage. Kidneys were obtained from aged (>10 years old) azotaemic (n = 13) and non-azotaemic (n = 7) cats. Immunoreactivity for 8-OHdG was found in the nuclei of glomeruli, proximal and distal tubules, loops of Henle and collecting ducts, whereas 4-HNE-positive signals were detected in the cytoplasm of distal nephrons in azotaemic and non-azotaemic cats. Quantitative analysis did not identify any significant differences between the azotaemic and non-azotaemic groups for any of the parameters examined. These results indicate that renal oxidative damage occurs in the kidneys of aged cats with CKD, regardless of whether they are azotaemic or non-azotaemic, emphasizing the importance of oxidative stress during early-stage CKD in senior and geriatric cats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app