Add like
Add dislike
Add to saved papers

High Autophagy Patterns in Swelling Platelets During Apheresis Platelet Storage.

Platelets undergo remarkable morphological changes during storage. Platelets change into different sizes and densities and differ in their biochemistry and functions. However, the correlation between structural heterogeneity and platelet autophagy is largely unknown. The aim of this study was to investigate the autophagy process in vitro, such as routine storage of platelets, and explore the role of reactive oxygen species (ROS) involved in the regulation of platelet autophagy. The ROS and autophagy levels of platelet concentrates from apheresis platelets were evaluated through flow cytometry. The expression levels of autophagy-associated proteins (LC3I, LC3II, Beclin1, Parkin, and PINK1) were measured via Western blot. All biomarkers were dynamically monitored for seven days. Moreover, the morphological characteristics of platelet morphology during storage were analyzed through transmission electron microscopy (TEM). Flow cytometry showed that the levels of total cell ROS and mitochondria ROS increased in the stored platelets. Together with the increase in mitochondrial ROS, the autophagy signal LC3 in the platelets was strongly amplified. The number of swollen platelets (large platelets) considerably increased, and that of autophagy signal LC3 was remarkably higher than that of the normal platelets. Western blot revealed that the expression levels of Beclin1 and LC3 II/LC3 I ratio were enhanced, whereas those of Parkin and PINK1 almost did not change during the seven days of storage. The existence of autophagosomes or autophagolysosomes in the platelets at the middle stage of platelet storage was observed via TEM. Our data demonstrated that the subpopulation of large (swollen) platelets exhibited different autophagy patterns. Furthermore, increased platelet autophagy was associated with mitochondrial ROS. These preliminary results suggest that swelling platelets have a higher autophagy pattern than normal platelets during storage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app