Add like
Add dislike
Add to saved papers

Caloric restriction improves inflammation in different tissues of the Wistar rats with obesity and 2K1C renovascular hypertension.

Renovascular hypertension (RHV) is the cause of high blood pressure due to left renal ischemia, and obesity and hypertension cause an inflammatory response. This work analyzed the inflammatory and tissue repair profile in renal, hepatic, and cardiac tissues in an animal model of RVH associated with a high-fat diet and caloric restriction. The expressions of RORγ-t, IL-17, T-bet, and TNF-α decreased and IFN-γ increased in the right kidney. In relation to the left kidney, caloric restriction decreased the expression of IFN-γ. In the liver, caloric restriction decreased RORγ-t, IL-17, and T-bet. Hypertension associated with obesity decreased the expression of IFN-γ, while caloric restriction increased. In the right kidney, hypertension and obesity, associated or not with caloric restriction, increased the area of collagen fibers. In the heart and liver, caloric restriction reduced the area of collagen fibers. Caloric restriction increased vascular endothelial growth factor, reduced levels of growth transformation factor-β1 (TGF-β), and increased collagen I in the left kidney. Hypertension/obesity, submitted or not having caloric restriction, increased TGF-β in liver. The results suggest that caloric restriction has beneficial effects in lowering blood pressure and regulating tissue proinflammatory cytokines. However, there was no change in the structure and composition of tissue repair markers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app