Add like
Add dislike
Add to saved papers

Influence of marker weights optimization on scapular kinematics estimated with a multibody kinematic optimization.

Journal of Biomechanics 2023 September 10
Scapular kinematic estimates are altered by soft tissue artefacts, therefore experimental and numerical methods should be developed to improve their accuracy. This study aimed to assess the influence of weights applied to the scapula markers within a closed-loop multibody kinematic optimization on scapular kinematic estimates. Fifteen healthy volunteers performed static postures mimicking analytical, daily living and sport movements. Scapulo-thoracic angles were computed either from a scapula locator as the reference, or from a closed-loop multibody-kinematic optimization (MKO) including a participant-specific point-on-ellipsoid scapulothoracic joint. Weights applied to scapula markers in the MKO were optimized to minimize the difference in scapular orientation from the reference. Optimizing weighting sets significantly (p < 0.0001) improved scapular orientation from 0.9° to 12.1° in comparison to scapular kinematics estimated with non-optimized weighting sets. The mean optimized weighting set contained no neglectable weight for all markers from the acromion to the medial border of the scapular spine but showed no significant difference (p = 0.547) compared to homogeneous weights. Optimized weighting sets were participant- and movement- specific. To conclude, homogenous weights applied on redundant markers located from acromion to scapular medial border spine are recommended when estimating scapular kinematics in upper limb MKO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app