Add like
Add dislike
Add to saved papers

Pyro-Phototronic Effect in All-Inorganic Two-Dimensional Ruddlesden-Popper Ferroelectric Perovskite Thin-films and Photodetection.

Ferroelectric perovskites, where ferroelectricity is embedded in the structure, are being considered for different device applications. In this study, we introduce Cs2 PbI2 Cl2 , an all-inorganic 2D Ruddlesden-Popper (RP) halide perovskite, as a ferroelectric material suitable for pyro-phototronic applications. Thin-films of the all-inorganic perovskite are successfully cast, and they demonstrate ferroelectric properties. Unlike hybrid materials, the ferroelectricity in Cs2 PbI2 Cl2 does not rely on the organic moiety possessing an electric dipole moment. Instead, the 2D-layer-forming octahedra are twisted and tilted due to a distortion in the bond lengths, leading to the emergence of spontaneous electric polarization. Based on the properties, we fabricate p - i - n heterojunctions by integrating the perovskite with carrier-transport layers. To determine the band-energies of the materials, scanning tunneling spectroscopy and Kelvin probe force microscopy are employed. The band-edges evidence a type-II band-alignment at both interfaces, enabling the material to exhibit both photovoltaic and pyroelectric behaviors when subjected to pulsed illumination. The devices based on the all-inorganic RP perovskite developed in this study exhibit pyro-phototronic effects and serve as self-powered photodetectors without any need for an external bias.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app