Add like
Add dislike
Add to saved papers

Chromosome-level Dinobdella ferox genome provided a molecular model for its specific parasitism.

Parasites & Vectors 2023 September 12
BACKGROUND: Dinobdella ferox is the most frequently reported leech species parasitizing the mammalian nasal cavity. However, the molecular mechanism of this special parasitic behavior has remained largely unknown.

METHODS: PacBio long-read sequencing, next-generation sequencing (NGS), and Hi-C sequencing were employed in this study to generate a novel genome of D. ferox, which was annotated with strong certainty using bioinformatics methods. The phylogenetic and genomic alterations of D. ferox were then studied extensively alongside the genomes of other closely related species. The obligatory parasitism mechanism of D. ferox was investigated using RNA-seq and proteomics data.

RESULTS: PacBio long-read sequencing and NGS yielded an assembly of 228 Mb and contig N50 of 2.16 Mb. Along Hi-C sequencing, 96% of the sequences were anchored to nine linkage groups and a high-quality chromosome-level genome was generated. The completed genome included 19,242 protein-coding genes. For elucidating the molecular mechanism of nasal parasitism, transcriptome data were acquired from the digestive tract and front/rear ends of D. ferox. Examining secretory proteins in D. ferox saliva helped to identify intimate connections between these proteins and membrane proteins in nasal epithelial cells. These interacting proteins played important roles in extracellular matrix (ECM)-receptor interaction, tight junction, focal adhesion, and adherens junction. The interaction between D. ferox and mammalian nasal epithelial cells included three major steps of pattern recognition, mucin connection and breakdown, and repair of ECM. The remodeling of ECM between epithelial cells of the nasal mucosa and epithelial cells of D. ferox may produce a stable adhesion environment for parasitism.

CONCLUSIONS: Our study represents the first-ever attempt to propose a molecular model for specific parasitism. This molecular model may serve as a practical reference for parasitism models of other species and a theoretical foundation for a molecular process of parasitism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app