Add like
Add dislike
Add to saved papers

From genetic correlations of Alzheimer's disease to classification with artificial neural network models.

Sporadic Alzheimer's disease (AD) is a complex neurological disorder characterized by many risk loci with potential associations with different traits and diseases. AD, characterized by a progressive loss of neuronal functions, manifests with different symptoms such as decline in memory, movement, coordination, and speech. The mechanisms underlying the onset of AD are not always fully understood, but involve a multiplicity of factors. Early diagnosis of AD plays a central role as it can offer the possibility of early treatment, which can slow disease progression. Currently, the methods of diagnosis are cognitive testing, neuroimaging, or cerebrospinal fluid analysis that can be time-consuming, expensive, invasive, and not always accurate. In the present study, we performed a genetic correlation analysis using genome-wide association statistics from a large study of AD and UK Biobank, to examine the association of AD with other human traits and disorders. In addition, since hippocampus, a part of cerebral cortex could play a central role in several traits that are associated with AD; we analyzed the gene expression profiles of hippocampus of AD patients applying 4 different artificial neural network models. We found 65 traits correlated with AD grouped into 9 clusters: medical conditions, fluid intelligence, education, anthropometric measures, employment status, activity, diet, lifestyle, and sexuality. The comparison of different 4 neural network models along with feature selection methods on 5 Alzheimer's gene expression datasets showed that the simple basic neural network model obtains a better performance (66% of accuracy) than other more complex methods with dropout and weight regularization of the network.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app