Add like
Add dislike
Add to saved papers

Assessment and Biodegradation of Polycyclic Aromatic Hydrocarbons in Soil and Water Around Petroleum Products Depot Suleja, Nigeria.

Petroleum contamination constitutes a frequent incidence in various petroleum depots in Nigeria. In this study, the polycyclic aromatic hydrocarbons (PAHs) present in soil and water in communities around Petroleum Products Marketing Company (PPMC) Suleja, Nigeria, were evaluated and degraded using indigenous microorganisms. The samples sites were divided into 7 plots from where samples of water and soil were obtained: one within the PPMC depot, five from communities surrounding the depot, and the control 93,000 km from the depot. The microbial counts were determined using spread plate inoculation technique on minimal salt media. The microbial isolates were characterized and identified based on their cultural, biochemical, and molecular characteristics. The potential of the microbial isolates to utilize 0.05 mL of diesel, kerosene, engine oil, and crude oil was determined in a Bushnell Haas Broth, and the biodegradation was determined by total viable cell counts and spectrophotometry. The ability of the isolates to mineralize PAHs was also evaluated in a minimum salt media. The bacterial isolates were species of Streptococcus, Pseudomonas, Staphylococcus, Proteus, Escherichia, and Bacillus, while species of Penicillium, Aspergillus, Mucor, and Rhizopus were isolated among the fungi. Aspergillus niger strain ATCC 1015 and Bacillus thuringiensis strain M43 showed high capacity to utilize the 16 priority PAHs. The pahE1 gene was used by Bacillus thuringiensis, Pseudomonas aeruginosa and A. niger, while Penicillium notatum used pahE2 gene for the degradation of the PAH. The current study identified microbial isolates that can utilize priority PAHs, making them beneficial for oil spill bioremediation in tropical environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app