Add like
Add dislike
Add to saved papers

TSPYL5 inhibits the tumorigenesis of colorectal cancer cells in vivo by triggering DNA damage.

CONTEXT: Testis-specific protein Y-encoded-like 5 (TSPYL5) suppresses several cancers in vivo, including colorectal cancer (CRC); however, its mechanism and role in CRC cell tumorigenesis in vivo remain unknown.

AIMS: To elucidate the molecular mechanisms of colorectal cancer and find new therapeutic targets to improve CRC patient outcomes.

SETTINGS AND DESIGN: Male mice (4 weeks old, 16-22 g) were housed in sterile cages in a temperature-controlled room (20-25°C) with a 12 h light/dark cycle and ad libitum food and water.

METHODS AND MATERIALS: TSPYL5 overexpressing or non-overexpressing HCT116 cells were used to create a nude mouse tumor model. Tumor tissue was evaluated histologically after hematoxylin and eosin (H and E) staining. TUNEL staining assessed tumor cell apoptosis. Ki67 expression in excised tumor tissue was measured by immunohistochemistry. Western blotting examined double-stranded break (DBS)-associated protein expression in vivo.

STATISTICAL ANALYSIS USED: IBM SPSS Statistics for Windows, Version 21.0 was used for all analyses (IBM Corp., Armonk, NY, USA). At least three independent experiments yield a mean value ± standard deviation. Unpaired Student's t-tests compared groups. One-way analysis of variance and Dunnett's test were used to compare groups with a P value < 0.5.

RESULTS: TSPYL5 overexpression inhibited CRC cell tumorigenicity and damaged tumor cells in vivo. TSPYL5 overexpression also significantly increased Bax and p-H2AX (early double-stranded break indicators) and decreased Ki67, Bcl-2, and peroxisome proliferator-activated receptor expression.

CONCLUSIONS: Collectively, TSPYL5 overexpression inhibited the tumorigenicity of CRC cells in vivo by inducing DNA damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app