Add like
Add dislike
Add to saved papers

A specific plasma amino acid profile in the Insulin2 Q104del Kuma mice at the diabetic state and reversal from hyperglycemia.

The metabolites in the plasma serve as potential biomarkers of disease. We previously established an early-onset diabetes mouse model, Ins2+/Q104del Kuma mice, under a severe immune-deficient (Rag-2/Jak3 double-deficient in BALB/c) background. Here, we revealed the differences in plasma amino acid profiles between Kuma and the wild-type mice. We observed an early reduction in glucogenic and ketogenic amino acids, a late increase in branched-chain amino acids (BCAAs) and succinyl CoA-related amino acids, and a trend of increasing ketogenic amino acids in Kuma mice than in the wild-type mice. Kuma mice exhibited hyperglucagonemia at high blood glucose, leading to perturbations in plasma amino acid profiles. The reversal of blood glucose by islet transplantation normalized the increases of the BCAAs and several aspects of the altered metabolic profiles in Kuma mice. Our results indicate that the Kuma mice are a unique animal model to study the link between plasma amino acid profile and the progression of diabetes for monitoring the therapeutic effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app