Add like
Add dislike
Add to saved papers

Neonatal islets from human PD-L1 transgenic pigs reduce immune cell activation and cellular rejection in humanized nonobese diabetic-scid IL2rγ null mice.

Strong xenorejection limits the clinical application of porcine islet transplantation in type 1 diabetes. Targeting T cell-mediated rejection is one of the main approaches to improve long-term graft survival. Here we study engraftment and survival of porcine islet cells expressing human programmed cell death ligand-1 (hPD-L1) in a humanized mouse model. Neonatal islet-like clusters (NPICCs) from transgenic hPD-L1 (hPD-L1-Tg) and wild-type (Wt) pigs were transplanted into nonobese diabetic-scid IL2rγnull mice stably reconstituted with human immune cells (hPD-L1 n = 10; Wt n = 6). Primary endpoint was development of normoglycemia during a 16-week observation period after transplantation. Secondary endpoints were porcine C-peptide levels and immune cell infiltration. Animals transplanted with hPD-L1-Tg neonatal islet-like clusters achieved a superior normoglycemic rate (50% versus 0%) and significantly higher plasma C-peptide levels as compared to the Wt group, indicating long-term beta cell function. Intracytoplasmic fluorescence-activated cell sorting analysis and immunohistochemistry revealed significantly decreased frequencies of interferonγ-expressing splenic hCD8-positive T cells and reduced intragraft-infiltrating immune cells. We here demonstrate that expression of hPD-L1 provides strong islet xenograft protection without administration of immunosuppressive drugs. These findings support the hypothesis that hPD-L1 has the capacity to control cellular rejection and therefore represents a very promising transgene candidate for clinical porcine islet xenotransplantation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app