Add like
Add dislike
Add to saved papers

Single-Cell Profiling of Premature Neonate Airways Reveals a Continuum of Myeloid Differentiation.

Single-cell genomic technologies hold great potential to advance our understanding of lung development and disease. A major limitation lies in accessing intact cells from primary lung tissues for profiling human airway health. Sampling methods, such as endotracheal aspirates, that are compatible with clinical interventions could enable longitudinal studies, the enrollment of large cohorts, and the development of novel diagnostics. To explore single-cell RNA-seq (scRNA-seq) profiling of the cell types present at birth in the airway lumen of extremely premature neonates (<28 weeks gestation). We isolated cells from endotracheal aspirates collected from intubated neonates within the first hour after birth. We generated data on 10 subjects, providing a rich view of airway luminal biology at a critical developmental period. Our results show that cells present in the airways of premature neonates primarily represent a continuum of myeloid differentiation, including fetal monocytes (25% of total), intermediate myeloid populations (48%), and macrophages (2.6%). Applying trajectory analysis to the myeloid populations, we identified two trajectories consistent with the developmental stages of interstitial and alveolar macrophages, as well as a third trajectory presenting an alternative pathway bridging the distinct macrophage precursors. The three trajectories share many dynamic genes (5,451), but also have distinct transcriptional changes (259 alveolar-specific, 666 interstitial-specific, and 285 bridging-specific). Overall, our results define cells isolated within the so-called "golden hour of birth" in extremely premature neonate airways representing complex lung biology and can be utilized in studies of human development and disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app