Add like
Add dislike
Add to saved papers

Genes of Predisposition to Childhood Beta-Cell Acute Lymphoblastic Leukemia in the Kazakh Population.

BACKGROUND: Today, acute lymphoblastic leukemia is one of the most common malignant diseases of the hematopoietic system. The genetic predisposition to ALL is not fully explored in various ethnic populations.

OBJECTIVE: The study aimed to conduct a comparative analysis of the population frequencies of alleles and genotypes of polymorphic gene variants: immune regulation GATA3 (rs3824662); transcription and differentiation of B cells: ARID5B (rs7089424, rs10740055), IKZF1 (rs4132601); differentiation of hematopoietic cells: PIP4K2A (rs7088318); apoptosis: CEBPE (rs2239633), tumor suppressors: CDKN2A (rs3731249), TP53 (rs1042522); carcinogen metabolism: CBR3 (rs1056892), CYP1A1 (rs104894, rs4646903), according to genome-wide association studies analyses associated with the risk of developing pediatric beta-cell acute lymphoblastic leukemia (B-cell ALL), in an ethnically homogeneous population of Kazakhs with studied populations.

METHODS: The genomic database consists of 1800 conditionally healthy persons of Kazakh nationality, genotyped using OmniChip 2.5-8 Illumina chips at the deCODE genetics as part of the InterPregGen 7 project of the European Union (EU) framework program under Grant Agreement No. 282540.

RESULTS: High population frequencies of single nucleotide polymorphism (SNP) minor alleles identified for immune regulation genes - GATA3 rs3824662 - 42.5%; transcription and differentiation of B-cells genes - ARID5B rs7089424 - 33.1% and rs10740055 - 48.5%, which suggests their significant genetic contribution to the risk of development and prognosis of the effectiveness of B-cell ALL therapy in the Kazakh population. The significantly lower population frequency of the minor allele G rs1056892 CBR3 gene - 38.6% in the Kazakhs suggests its significant protective effect in reducing the risk of childhood B-cell ALL and the smaller number of cardiac complications after anthracycline therapy.

CONCLUSION: The obtained results will serve as a basis for developing effective methods for predicting the risk of development, early diagnosis, and effectiveness of treatment of B-cell ALL in children.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app