Add like
Add dislike
Add to saved papers

Facile Strategy to Output Fluorescein from Nucleic Acid Interactions.

Bioconjugate Chemistry 2023 August 29
Biomolecular operations, which involve the conversion of molecular signals or interactions into specific functional outputs, are fundamental to the field of biology and serve as the important foundation for the design of diagnostic and therapeutic systems. To maximize their functionalities and broaden their applicability, it is crucial to develop novel outputs and facile chemical transformation methods. With this aim, in this study, we present a straightforward method for converting nucleic acid signals into fluorescein outputs that exhibit a wide range of functionalities. This operation is designed through a DNA-templated reaction based on riboflavin-photocatalyzed oxidation of dihydrofluorescein, which is readily prepared by simple NaBH4 reduction of the fluorescein with no complicated chemical caging steps. The templated photooxidation exhibits high efficiency ( k app = 2.7 × 10-3 /s), generating a clear fluorescein output signal distinguishable from a low background, originating from the high stability of the synthesized dihydrofluorescein. This facile and efficient operation allows the nucleic acid-initiated activation of various fluorescein functions, such as fluorescence and artificial oxidase activity, which are applied in the design of novel bioanalytical systems, including fluorescent and colorimetric DNA sensors. The operation presented herein would expand the scope of biomolecular circuit systems for diagnostic and therapeutic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app