Add like
Add dislike
Add to saved papers

Molecular mechanisms of antidiabetic effect of betulinic acid in lotus rhizome.

OBJECTIVES: To explain the bio-physiological mechanisms of the antidiabetic effect of betulinic acid in Lotus rhizome.

BACKGROUND: Even though Sri Lankan native medicine uses Lotus rhizome as a medicinal food for diabetes mellitus, its antidiabetic property has not been scientifically explained yet. It is found to compose several medicinally active components with antidiabetic properties, including Betulinic acid.

METHODS: A narrator review was conducted with a literature search in PubMed and Google Scholar databases using the search terms "Nelumbo nucifera rhizome", "Lotus rhizome", "phytochemicals", "antidiabetic effect", "hypoglycaemic effect" "Betulinic acid", and "molecular mechanism".

RESULTS: The triterpenoid, Betulinic acid exerts its antidiabetic effect via seven bio-physiological mechanisms including, inhibiting α-glucosidase and α-amylase, upregulating the expression of peroxisome proliferator-activated receptor gamma coactivator-1 α, enhancing AS160 protein phosphorylation, stimulating adenosine monophosphate-activated protein kinase activation, stimulating Glucose transporter type 4 synthesis and translocation, inhibiting Protein Tyrosine Phosphatase 1 B activity preventing dephosphorylation of insulin receptor and stimulating Takeda-G-protein-receptor-5 resulting in an increased release of insulin from insulin-containing granulesCONCLUSION: The available scientific knowledge explains that betulinic acid in Lotus rhizome can improve glucose homeostasis contributing to the antidiabetic effect of this root (Tab. 1, Fig. 6, Ref. 29).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app