Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Vascular endothelial mineralocorticoid receptors and epithelial sodium channels in metabolic syndrome and related cardiovascular disease.

Metabolic syndrome is a group of risk factors that increase the risk of developing metabolic and cardiovascular disease (CVD) and include obesity, dyslipidemia, insulin resistance, atherosclerosis, hypertension, coronary artery disease, and heart failure. Recent research indicates that excessive production of aldosterone and associated activation of mineralocorticoid receptors (MR) impair insulin metabolic signaling, promote insulin resistance, and increase the risk of developing metabolic syndrome and CVD. Moreover, activation of specific epithelial sodium channels (ENaC) in endothelial cells (EnNaC), which are downstream targets of endothelial-specific MR (ECMR) signaling, are also believed to play a crucial role in the development of metabolic syndrome and CVD. These adverse effects of ECMR/EnNaC activation are mediated by increased oxidative stress, inflammation, and lipid metabolic disorders. It is worth noting that ECMR/EnNaC activation and the pathophysiology underlying metabolic syndrome and CVD appears to exhibit sexual dimorphism. Targeting ECMR/EnNaC signaling may have a beneficial effect in preventing insulin resistance, diabetes, metabolic syndrome, and related CVD. This review aims to examine our current understanding of the relationship between MR activation and increased metabolic syndrome and CVD, with particular emphasis placed on the role for endothelial-specific ECMR/EnNaC signaling in these pathological processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app