Add like
Add dislike
Add to saved papers

Efficient Solar Cells Based on Porphyrin and Concerted Companion Dyes Featuring Benzo 12-Crown-4 for Suppressing Charge Recombination and Enhancing Dye Loading.

In recent years, various porphyrin dyes have been designed to develop efficient dye-sensitized solar cells (DSSCs). Based on our previously reported porphyrin dye XW43 , which contains a phenothiazine donor with two diethylene glycol (DEG)-derived substituents, we herein report a porphyrin dye XW89 by introducing a benzo 12-crown-4 (BCE) unit onto the N atom of the phenothiazine donor. On this basis, XW90 and XW91 have been synthesized by replacing a DEG chain in XW89 with two DEG chains and a 12-crown-4 unit, respectively. For iodine electrolyte-based DSSCs, dyes XW89-XW91 exhibit V OC values of 765-779 mV, higher than that of XW43 (755 mV), which may be related to the strong capability of the BCE group in binding Li+ and thus suppressing the downward shift of the TiO2 conduction band and interfacial charge recombination. Moreover, the smaller size of 12-crown-4 than the DEG unit enables higher adsorption amounts of the dyes than XW43 , contributing to an enhanced J SC value. Due to the presence of two BCE units, dye XW91 exhibits the highest dye loading amount and J SC of 1.86 × 10-7 mol cm-2 and 19.79 mA cm-2 , respectively, affording a high PCE of 11.1%. To further enhance the light-harvesting ability, a concerted companion (CC) dye XW92 has been constructed by linking the two subdye units corresponding to the porphyrin dye XW91 and an organic dye. As a result, XW92 affords an enhanced J SC and efficiency. Further coadsorption of XW92 with chenodeoxycholic acid achieved the highest efficiency of 12.1%. This work provides an effective approach for fabricating efficient DSSCs sensitized by porphyrin and CC dyes based on the introduction of crown ether units with smaller sizes and stronger Li+ affinities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app