Add like
Add dislike
Add to saved papers

Emergent information dynamics in many-body interconnected systems.

The information implicitly represented in the state of physical systems allows for their analysis using analytical techniques from statistical mechanics and information theory. This approach has been successfully applied to complex networks, including biophysical systems such as virus-host protein-protein interactions and whole-brain models in health and disease, drawing inspiration from quantum statistical physics. Here we propose a general mathematical framework for modeling information dynamics on complex networks, where the internal node states are vector valued, allowing each node to carry multiple types of information. This setup is relevant for various biophysical and sociotechnological models of complex systems, ranging from viral dynamics on networks to models of opinion dynamics and social contagion. Instead of focusing on node-node interactions, we shift our attention to the flow of information between network configurations. We uncover fundamental differences between widely used spin models on networks, such as voter and kinetic dynamics, which cannot be detected through classical node-based analysis. We illustrate the mathematical framework further through an exemplary application to epidemic spreading on a low-dimensional network. Our model provides an opportunity to adapt powerful analytical methods from quantum many-body systems to study the interplay between structure and dynamics in interconnected systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app