Journal Article
Review
Add like
Add dislike
Add to saved papers

Short-term blood pressure variability as a potential therapeutic target for kidney disease.

Clinical Hypertension 2023 August 16
Short-term blood pressure variability (BPV) measured with ambulatory blood pressure (BP) monitoring has been demonstrated to be significant in predicting various clinical outcomes. Short-term BPV is distinguished from long-term BPV based on the time interval in which BP fluctuations are measured. Increased short-term BPV has been linked to detrimental effects on the microvascular structure and contributes to subclinical organ damage in the heart, blood vessels, and kidneys, regardless of the average 24-h BP levels. Short-term BPV can be defined by various measures, including calculated metrics (standard deviation, coefficient of variation, average real variability, weighted standard deviation, variability independent of the mean) or dipping patterns. Nevertheless, the additional role of short-term BPV beyond the predictive value of average 24-h BPs or established risk factors for cardiovascular disease and kidney disease remains unclear. In particular, longitudinal studies that evaluate the association between short-term BPV and kidney function impairment are limited and no conclusive data exist regarding which short-term BPV indicators most accurately reflect the prognosis of kidney disease. The issue of how to treat BPV in clinical practice is another concern that is frequently raised. This paper presents a review of the evidence for the prognostic role of short-term BPV in kidney outcomes. Additionally, this review discusses the remaining concerns about short-term BPV that need to be further investigated as an independent risk modifier.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app