Add like
Add dislike
Add to saved papers

Role of GLP-1 receptor agonist in diabetic cardio-renal disorder: Recent updates of clinical and pre-clinical evidence.

Cardiovascular complications and renal disease is the growing cause of mortality in patients with diabetes. The subversive complications of diabetes such as hyperglycemia, hyperlipidemia and insulin resistance lead to an increase in the risk of myocardial infarction (MI), stroke, heart failure (HF) as well as chronic kidney disease (CKD). Among the commercially available anti-hyperglycemic agents, incretin-based medications appear to be safe and effective in the treatment of type 2 diabetes mellitus (T2DM) and associated cardiovascular and renal disease. Glucagon-like peptide 1 receptor agonists (GLP-1RAs) have been shown to be fruitful in reducing HbA1c, blood glucose, lipid profile, and body weight in diabetic patients. Several preclinical and clinical studies revealed the safety, efficacy, and preventive advantages of GLP-1RAs against diabetes-induced cardiovascular and kidney disease. Data from cardio-renal outcome trials had highlighted that GLP-1RAs protected people with established CKD from significant cardiovascular disease, lowered the likelihood of hospitalization for heart failure (HHF), and lowered all-cause mortality. They also had a positive effect on people with end-stage renal disease (ESRD) and CKD. Beside clinical outcomes, GLP-1RAs reduced oxidative stress, inflammation, fibrosis, and improved lipid profile pre-clinically in diabetic models of cardiomyopathy and nephropathy that demonstrated the cardio-protective and reno-protective effect of GLP-1RAs. In this review, we have focused on the recent clinical and preclinical outcomes of GLP-1RAs as cardio-protective and reno-protective agents as GLP-1RAs medications have been demonstrated to be more effective in treating T2DM and diabetes-induced cardiovascular and renal disease than currently available treatments in clinics, without inducing hypoglycemia or weight gain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app