Add like
Add dislike
Add to saved papers

DNAJA3 regulates B cell development and immune function.

Biomedical Journal 2023 July 23
BACKGROUND: DnaJ homolog subfamily A member 3 (DNAJA3), also known as the tumorous imaginal disc (Tid1), is shown to be crucial in T cell development. DNAJA3 functions as a tumor suppressor implicated in lymphocyte development and survival. However, the role of DNAJA3 in B cell development and immune function remains unknown. In this study, we utilized a mouse model of B cell-specific DNAJA3 knockout (CD19-Cre/+ ; DNAJA3flx/flx ) to investigate the physiological function of DNAJA3 in B cell development and immune function.

METHODS: We characterized B cell populations in various developmental stages and examined mitochondrial content and function between control and DNAJA3 KO using flow cytometry analysis. DNAJA3 and OXPHOS protein complexes in sorted B cells between mice groups were compared using immunoblot techniques. The activity of B cell blastogenesis in splenocytes was measured by performing CFSE and MTT assays. Furthermore, immunoglobulin production was detected using the ELISA method.

RESULTS: DNAJA3 deficiency decreases from pro B cells to immature B cells. The overall B220+ population in the bone marrow and secondary immune organs also decreased. B cell subpopulations B1 (B1b) and B2 significantly decrease. The B cell blastogenesis activity and immunoglobulin production decreased in DNAJA3 KO mice. Mechanistically, DNAJA3 deficiency significantly increases dysfunctional mitochondria activity and decreases mitochondrial mass, membrane potential, and mitochondria respiratory complex proteins. These factors could have influenced B cell differentiation during development, differentiation to antibody-secreting cells, and immune activation.

CONCLUSION: Overall, our study provides supportive evidence for the role of DNAJA3 in B cell development and function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app