Add like
Add dislike
Add to saved papers

Individualization of Atrial Tachycardia Models for Clinical Applications: Performance of Fiber-independent Model.

One of the challenges in the development of patient-specific models of cardiac arrhythmias for clinical applications has been accounting for myocardial fiber organization. The fiber varies significantly from heart to heart, but cannot be directly measured in live tissue. The goal of this paper is to evaluate in-silico the accuracy of left atrium activation maps produced by a fiber-independent (isotropic) model with tuned diffusion coefficients, compares to a model incorporating myocardial fibers with the same geometry. For this study we utilize publicly available DT-MRI data from 7 ex-vivo hearts. The comparison is carried out in 51 cases of focal and rotor arrhythmias located in different regions of the atria. On average, the local activation time accuracy is 96% for focal and 93% for rotor arrhythmias. Given its reasonably good performance and the availability of readily accessible data for model tuning in cardiac ablation procedures, the fiber-independent model could be a promising tool for clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app