Add like
Add dislike
Add to saved papers

Ce 1- x Zr x O 2 nanoparticles in bacterial cellulose, bio-based composites with self-regenerating antioxidant capabilities.

Nanoscale 2023 July 25
Bacterial cellulose (BC) is an emerging biopolymer with ever-widening uses in the biomedical field due to its purity, mechanical stability, conformability, moisture control, and biocompatibility. In the wet form, its highly porous nanofibrillar structure and abundant surface hydroxyl groups enable the functionalisation of BC with inorganic nanoparticles (NPs), granting the material additional purposive capabilities. As oxidative stress caused by reactive oxygen species (ROS) negatively affects various cellular structures, the functionalisation of BC with CeO2 NPs, known antioxidants, is pursued in this work to achieve composites capable of minimising inflammation and tissue damage. We report on low-temperature in situ syntheses of CeO2 NPs in BC enabling the formation of BC-CeO2 composites that exhibit self-regenerating antioxidant properties, as verified by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays and studies of the evolution in the CeO2 absorption edge (indicative of the Ce3+ and Ce4+ fractions). X-Ray photoelectron spectroscopy (XPS) further reveals that incorporation of zirconium into the CeO2 lattice leads to a four-fold increase in the Ce3+ : Ce4+ ratio, thereby enhancing the composite antioxidant performance as exemplified by BC-Ce0.6 Zr0.4 O2 recording the highest %DPPH scavenging per unit mass of NPs among the BC-Ce1- x Zr x O2 studied systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app