Read by QxMD icon Read


Changlong Liu, Lin Wang, Xiaoshuang Chen, Jing Zhou, Weiwei Tang, Wanlong Guo, Jin Wang, Wei Lu
The present work reports on a graphene-like material that is promising for photodetection applications due to its high optical absorption and layer-dependent properties. To date, only narrowband photodetectors have been realized; therefore, extending the working wavelength is becoming more imperative for applications such as high-contrast imaging and remote sensing. In this work, we developed a novel detection technique that provides enhanced performance across the infrared and terahertz bands by using an antenna-assisted top-gated black phosphorus phototransistor...
March 16, 2018: Nanoscale
Wenhui Ma, Fanfan Fu, Jingyi Zhu, Rui Huang, Yizhou Zhu, Zhenwei Liu, Jing Wang, Peter S Conti, Xiangyang Shi, Kai Chen
We report the use of multifunctional folic acid (FA)-modified dendrimers as a platform to radiolabel with 64Cu for PET imaging of folate receptor (FR)-expressing tumors. In this study, amine-terminated generation 5 (G5) poly(amidoamine) dendrimers were sequentially modified with fluorescein isothiocyanate (FI), FA, and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), followed by acetylation of the remaining dendrimer terminal amines. The as-formed multifunctional DOTA-FA-FI-G5·NHAc dendrimers were then radiolabeled with 64Cu via the DOTA chelation...
March 16, 2018: Nanoscale
Yulong Bai, Ning Jiang, Shifeng Zhao
Nanocluster-assembled FeGa micron-scale discs prepared by low-energy cluster beam deposition were embedded into Bi5Ti3FeO15 matrices to form pseudo 1-3 heterostructure films. The microstructures and multiferroic properties were investigated. Good ferroelectric, piezoelectric, and ferromagnetic properties and giant magnetoelectric effects are achieved for the heterostructure films, which is ascribed to the depression of the clamped effect from the hard substrate for such pseudo 1-3 structures and the multi-interface coupling between the large magnetostrictive coefficient of FeGa micron-scale discs and the high piezoelectric coefficient of the circle surrounding the Bi5Ti3FeO15 matrices...
March 16, 2018: Nanoscale
Srabanti Ghosh, Laurence Ramos, Hynd Remita
Materials are the key roadblocks for the commercialization of energy conversion devices in fuel cells and solar cells. Significant research has focused on tuning the intrinsic properties of materials at the nanometer scale. The soft template mediated controlled fabrication of advanced nanostructured materials is attracting considerable interest due to the promising applications of these materials in catalysis and electrocatalysis. Swollen hexagonal lyotropic liquid crystals (SLCs) consist of oil-swollen surfactant-stabilized 1D, 2D or 3D nanometric assemblies regularly arranged in an aqueous solvent...
March 16, 2018: Nanoscale
Julia Tesch, Fabian Paschke, Mikhail Fonin, Marko Wietstruk, Stefan Böttcher, Roland J Koch, Aaron Bostwick, Chris Jozwiak, Eli Rotenberg, Anna Makarova, Beate Paulus, Elena Voloshina, Yuriy Dedkov
The implementation of graphene in semiconducting technology requires precise knowledge about the graphene-semiconductor interface. In our work the structure and electronic properties of the graphene/n-Ge(110) interface are investigated on the local (nm) and macro (from μm to mm) scales via a combination of different microscopic and spectroscopic surface science techniques accompanied by density functional theory calculations. The electronic structure of freestanding graphene remains almost completely intact in this system, with only a moderate n-doping indicating weak interaction between graphene and the Ge substrate...
March 16, 2018: Nanoscale
Feiyang Yu, Ya Gao, Zhongling Lang, Yuanyuan Ma, Liying Yin, Jing Du, Huaqiao Tan, Yonghui Wang, Yangguang Li
Molybdenum carbides are considered as one type of privileged noble-metal-free electrocatalysts for hydrogen evolution reactions (HER) due to their d-band electron structure, which is similar to Pt. Especially, the electronic structure of such materials can be further adjusted by elemental doping to improve their electrocatalytic activity. Herein, we selected the Anderson-type polyoxometalates (POMs) (NH4)n[TMMo6O24H6]·5H2O (TM = Ni2+, Co2+, n = 4; TM = Fe3+, Cr3+, n = 3) as precursors to prepare new transition-metal-doped Mo2C materials...
March 16, 2018: Nanoscale
Yupeng Shen, Fancy Qian Wang, Jie Liu, Yaguang Guo, Xiaoyin Li, Guangzhao Qin, Ming Hu, Qian Wang
A new two-dimensional (2D) carbon allotrope, Hexa-C20, composed of C20 fullerene is proposed. State-of-the-art first principles calculations combined with solving the linearized phonon Boltzmann transport equation confirm that the new carbon structure is not only dynamically and thermally stable, but also can withstand temperatures as high as 1500 K. Hexa-C20 possesses a quasi-direct band gap of 3.28 eV, close to that of bulk ZnO and GaN. The intrinsic lattice thermal conductivity κlat of Hexa-C20 is 1132 W m-1 K-1 at room temperature, which is much larger than those of most carbon materials such as graphyne (82...
March 16, 2018: Nanoscale
Huizhen Yao, Lai Liu, Zhuo Wang, Henan Li, Longlong Chen, Mei Er Pam, Weigang Chen, Hui Ying Yang, Wenjing Zhang, Yumeng Shi
Tungsten disulfide monolayers have attracted extensive attention in nanoelectronics and optoelectronics applications due to their remarkable electronic and optical properties. High-quality WS2 monolayers with a scalable size and uniform thickness can be synthesized by a chemical vapor deposition method (CVD). However, they commonly contain intrinsic structural defects and different populations of charge carriers, which are responsible for different contributions of excitons, trions, and biexcitons to their photoluminescence (PL) emission...
March 16, 2018: Nanoscale
Y J Son, H S Kim, W Mao, J B Park, D Lee, H Lee, H S Yoo
A two-step strategy for coaxial electrospinning and postelectrospinning is an effective method for fabricating superfine nanofibers composed of highly swellable hydrogels. Alginate and poly(ε-caprolactone) [PCL] were coelectrospun via fibrous meshes with a coaxial nozzle; alginate at the core was subsequently cross-linked in calcium chloride solution. The PCL sheath was removed from the meshes by repeated organic-phase washing. The peeling process was monitored by scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry, and the complete removal of the PCL outer layers was confirmed by the thinning of the fiber volume...
March 16, 2018: Nanoscale
Zhen Li, Shouzhen Jiang, Yanyan Huo, Tingyin Ning, Aihua Liu, Chao Zhang, Yuan He, Minghong Wang, Chonghui Li, Baoyuan Man
We report a three-dimensional (3D) SERS substrate with different numbers of silver nanoparticle (Ag NP) layers using multilayer graphene oxide (GO) as a spacer. The SERS performance of the 3D nanostructure was investigated and it was found that the SERS effect increased as the number of Ag NP layers increased, and showed almost no change for more than four layers. We found that the SERS performance of the 3D nanostructures can be mainly attributed to the topmost hot spots which are closely related to the Ag NP layers in the 3D nanostructure...
March 16, 2018: Nanoscale
Ming Xiao, Daozhi Shen, Kevin P Musselman, Walter W Duley, Y Norman Zhou
Neuromorphic computational systems that emulate biological synapses in the human brain are fundamental in the development of artificial intelligence protocols beyond the standard von Neumann architecture. Such systems require new types of building blocks, such as memristors that access a quasi-continuous and wide range of conductive states, which is still an obstacle for the realization of high-efficiency and large-capacity learning in neuromorphoric simulation. Here, we introduce hydrogen and sodium titanate nanobelts, the intermediate products of hydrothermal synthesis of TiO2 nanobelts, to emulate the synaptic behavior...
March 16, 2018: Nanoscale
Daniel Amgar, Tal Binyamin, Vladimir Uvarov, Lioz Etgar
One of the most attractive features of perovskite materials is their chemical flexibility. Due to innovative chemical compositions of perovskites, their optical and structural properties, and functionalities have become more advanced, enabling better solar performance in photovoltaics, as well as robustness and excellent properties in the nanoscale for optoelectronics. The quest for novel perovskite compositions in the nano-scale is significantly important. This paper reports on a mixed-cation system of RbxCs1-xPbX3 (where X = Cl or Br) nanoparticles...
March 16, 2018: Nanoscale
Mandeep Singh, Deshetti Jampaiah, Ahmad E Kandjani, Ylias M Sabri, Enrico Della Gaspera, Philipp Reineck, Martyna Judd, Julien Langley, Nicholas Cox, Joel van Embden, Edwin L H Mayes, Brant C Gibson, Suresh K Bhargava, Rajesh Ramanathan, Vipul Bansal
Oxygen vacancies in inorganic semiconductors play an important role in reducing electron-hole recombination, which may have important implications in photocatalysis. Cuprous oxide (Cu2O), a visible light active p-type semiconductor, is a promising photocatalyst. However, the synthesis of photostable Cu2O enriched with oxygen defects remains a challenge. We report a simple method for the gram-scale synthesis of highly photostable Cu2O nanoparticles by the hydrolysis of a Cu(i)-triethylamine [Cu(i)-TEA] complex at low temperature...
March 15, 2018: Nanoscale
Lu Wang, Weiyu Song, Jianlin Deng, Huiling Zheng, Jian Liu, Zhen Zhao, Manglai Gao, Yuechang Wei
The photocatalytic N2O dissociation on anatase TiO2 is an attractive reaction and the mechanism of the photocalytic process, the role of excited electrons, and the favorable facet for higher activity need a more detailed study at the molecular level. Using DFT + U calculations, we investigate the dissociation process of N2O into N2 with and without photoexcited electrons on anatase TiO2 (001) and (101) facets to unravel such puzzles. The optical absorption properties of TiO2 (001) and (101) facets are compared in combination with electronic analysis...
March 15, 2018: Nanoscale
Zehang Zhou, Weerapha Panatdasirisuk, Tyler S Mathis, Babak Anasori, Canhui Lu, Xinxing Zhang, Zhiwei Liao, Yury Gogotsi, Shu Yang
Free-standing, highly flexible and foldable supercapacitor electrodes were fabricated through the spray-coating assisted layer-by-layer assembly of Ti3 C2 Tx (MXene) nanoflakes together with multi-walled carbon nanotubes (MWCNTs) on electrospun polycaprolactone (PCL) fiber networks. The open structure of the PCL network and the use of MWCNTs as spacers not only limit the restacking of Ti3 C2 Tx flakes but also increase the accessible surface of the active materials, facilitating fast diffusion of electrolyte ions within the electrode...
March 15, 2018: Nanoscale
Chantal Paquet, Thomas Lacelle, Xiangyang Liu, Bhavana Deore, Arnold J Kell, Sylvie Lafrenière, Patrick R L Malenfant
Copper formate complexes with various primary amines, secondary amines and pyridines were prepared, and their decomposition into conductive films was characterized. A comparison of the various complexes reveals that the temperature of thermolysis depends on the number of hydrogen bonds that can be formed between the amine and formate ligands. The particle size resulting from sintering of the copper complexes is shown to depend on the fraction of amine ligand released during the thermolysis reaction. The particle size in turn is shown to govern the electrical properties of the copper films...
March 15, 2018: Nanoscale
Je Min Yoo, Baekwon Park, Sang Jin Kim, Yong Seok Choi, Sungmin Park, Eun Hye Jeong, Hyukjin Lee, Byung Hee Hong
Ferrous ion-based catalysts have been widely employed to oxidatively destruct the major industrial pollutants such as phenolic compounds through advanced oxidation processes (AOPs). These agents, however, inevitably show several drawbacks including the need for pH adjustment and further purification steps to remove residual salts. Here we report the use of a chemical vapour deposition (CVD) graphene film as a novel metal-free catalyst for the AOP-based degradation of phenols in aqueous solution, which does not require additional steps for salt removal nor external energy to activate the process...
March 15, 2018: Nanoscale
Juan Li, Yang Du, Zhenqi Jiang, Yuchen Tian, Nianxiang Qiu, Yinjie Wang, Muhammad Zubair Lqbal, Menying Hu, Ruifen Zou, Lijia Luo, Shiyu Du, Jie Tian, Aiguo Wu
Due to the molecular and cellular heterogeneity of glioma, discovery of novel targeted sites and ligands for glioma imaging and therapy remains challenging. Neuropeptide Y (NPY) Y1 receptors (Y1 Rs) are highly over expressed in various brain tumors including glioma, and can serve as potential targeting sites for glioma imaging and therapy. Here, we show by in vivo fluorescent imaging that a highly selective Y1 R ligand, [Asn6 , Pro34 ] NPY (AP-NPY), facilitated circumvention of the blood brain barrier (BBB) by nanomicelles specifically targeting glioma...
March 15, 2018: Nanoscale
Seong Gi Jeon, Hosun Shin, Yun Hwan Jaung, Jinho Ahn, Jae Yong Song
Thickness effects on thermal conductivities of black phosphorus nanosheets, which are anisotropic in the zigzag and armchair planar directions, are experimentally and theoretically investigated in the thickness range of 13 to 48 nm. The thermal conductivities decrease with the thickness, decreasing from 13 to 8 W m-1 K-1 in the zigzag direction and from 10 to 6 W m-1 K-1 in the armchair direction at 300 K, respectively. The anisotropic thermal conductivities, regardless of the thickness, might result from the anisotropic phonon velocity arising from the hinge-like structure...
March 15, 2018: Nanoscale
Yan Zhan, Yingliang Liu, Hongru Zu, Yanxian Guo, Shuangshuang Wu, Haiyao Yang, Zhiming Liu, Bingfu Lei, Jianle Zhuang, Xuejie Zhang, Di Huang, Chaofan Hu
Different from their bulk counterparts, plasmonic molybdenum oxide nanomaterials display superior optical and electronic properties, but unfortunately, phase-controlled synthesis of molybdenum oxide nanomaterials with multifunctional performances still remains a challenge. To actualize this, a surfactant-free solvothermal strategy was proposed to fabricate molybdenum oxide nanomaterials with a tunable phase. Encouragingly, the as-prepared molybdenum dioxide nanoparticles (MoO2 NPs) exhibit intense near-infrared (NIR) absorption attributed to the localized surface plasmon resonance (LSPR) effect, which results in their application as a surface enhanced Raman scattering (SERS) substrate to detect trace amounts of molecular species including Rhodamine 6G (R6G), crystal violet (CV), IR-780 iodide (IR780) and methylene blue (MB)...
March 15, 2018: Nanoscale
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"