Add like
Add dislike
Add to saved papers

Catalpol ameliorates inflammation and oxidative stress via regulating Sirt1 and activating Nrf2/HO-1 signaling against acute kidney injury.

BACKGROUND: Septic acute kidney injury (SAKI) is usually caused by sepsis. It has been shown that catalpol (Cat) impairs sepsis-evoked organ dysfunction to a certain degree. The current work aims to evaluate the protective effects of Cat on SAKI and potential mechanisms in vivo and in vitro.

METHODS: SAKI cellular and murine model were set up using lipopolysaccharide (LPS) in vitro and in vivo. Cell apoptosis in cells was determined by TUNEL assay. Levels of inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). The levels of the markers of oxidative injury were evaluated by corresponding commercial kits. Protein levels were assayed via western blotting and immunohistochemistry (IHC) staining.

RESULTS: The results demonstrated that LPS upregulated TNF-α, IL-6, and malondialdehyde levels, and downregulated superoxide dismutase, whereas Cat treated cells have the opposite results. Functional assays displayed that Cat remarkably reversed the LPS-challenged damage as the impairment of TNF-α and IL-6 levels, oxidative stress, and the apoptosis in HK-2 cells. Moreover, knockdown of Sirtuin 1 (Sirt1) counteracted the suppressive impact of Cat on LPS-triggered inflammatory response, oxidative stress, and renal damage. Further, Cat elevated Sirt1 expression and activated the Nrf2/HO-1 signaling in LPS-engendered SAKI in vivo and in vitro.

CONCLUSION: Our study clearly proved that Cat protected against LPS-induced SAKI via synergic antioxidant and anti-inflammatory actions by regulating Sirt1 and Nrf2/HO-1 signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app