Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Transplantation of in vitro prefabricated adipose organoids attenuates skin fibrosis by restoring subcutaneous fat and inducing dermal adipogenesis.

Localized scleroderma is a complex autoimmune disease characterized by dermal fibrosis and loss of cutaneous fat. While cytotherapy offers a promising treatment option, stem cell transplantation results in low survival rates and fails in target cell differentiation. In this study, we aimed to prefabricate syngeneic adipose organoids (ad-organoids) using microvascular fragments (MVFs) via three-dimensional (3D) culturing and transplant them beneath the fibrotic skin to restore subcutaneous fat and reverse the pathological manifestation of localized scleroderma. We employed 3D culturing of syngeneic MVFs with stepwise angiogenic and adipogenic induction to produce ad-organoids and evaluated their microstructure and paracrine function in vitro. C57/BL6 mice with induced skin scleroderma were treated with adipose-derived stem cells (ASCs), adipocytes, ad-organoids, and Matrigel, and the therapeutic effect was assessed histologically. Our results showed that ad-organoids derived from MVF contained mature adipocytes and a well-established vessel network, secreted multiple adipokines, promoted adipogenic differentiation of ASCs, and suppressed proliferation and migration of scleroderma fibroblasts. Subcutaneous transplantation of ad-organoids reconstructed the subcutaneous fat layer and stimulated dermal adipocyte regeneration in bleomycin-induced scleroderma skin. It reduced collagen deposition and dermal thickness, attenuating dermal fibrosis. Moreover, ad-organoids suppressed macrophage infiltration and promoted angiogenesis in the skin lesion. In conclusion, 3D culturing of MVFs with stepwise angiogenic and adipogenic induction is an effective strategy for the fabrication of ad-organoids, and the transplantation of prefabricated ad-organoids can improve skin sclerosis by restoring cutaneous fat and attenuating skin fibrosis. These findings offer a promising therapeutic approach for the treatment of localized scleroderma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app