Clinical Trial
Journal Article
Add like
Add dislike
Add to saved papers

Explainable Artificial Intelligence to Identify Dosimetric Predictors of Toxicity in Patients with Locally Advanced Non-Small Cell Lung Cancer: A Secondary Analysis of RTOG 0617.

PURPOSE: Dosimetric predictors of toxicity in patients treated with definitive chemoradiation for locally advanced non-small cell lung cancer are often identified through trial and error. This study used machine learning (ML) and explainable artificial intelligence to empirically characterize dosimetric predictors of toxicity in patients treated as part of a prospective clinical trial.

METHODS AND MATERIALS: A secondary analysis of the Radiation Therapy Oncology Group (RTOG) 0617 trial was performed. Multiple ML models were trained to predict grade ≥3 pulmonary, cardiac, and esophageal toxicities using clinical and dosimetric features. Model performance was evaluated using the area under the curve (AUC). The best performing model for each toxicity was explained using the Shapley Additive Explanation (SHAP) framework; SHAP values were used to identify relevant dosimetric thresholds and were converted to odds ratios (ORs) with confidence intervals (CIs) generated using bootstrapping to obtain quantitative measures of risk. Thresholds were validated using logistic regression.

RESULTS: The best-performing models for pulmonary, cardiac, and esophageal toxicities, outperforming logistic regression, were extreme gradient boosting (AUC, 0.739), random forest (AUC, 0.706), and naive Bayes (AUC, 0.721), respectively. For pulmonary toxicity, thresholds of a mean dose >18 Gy (OR, 2.467; 95% CI, 1.049-5.800; P = .038) and lung volume receiving ≥20 Gy (V20) > 37% (OR, 2.722; 95% CI, 1.034-7.163; P = .043) were identified. For esophageal toxicity, thresholds of a mean dose >34 Gy (OR, 4.006; 95% CI, 2.183-7.354; P < .001) and V20 > 37% (OR, 3.725; 95% CI, 1.308-10.603; P = .014) were identified. No significant thresholds were identified for cardiac toxicity.

CONCLUSIONS: In this data set, ML approaches validated known dosimetric thresholds and outperformed logistic regression at predicting toxicity. Furthermore, using explainable artificial intelligence, clinically useful dosimetric thresholds might be identified and subsequently externally validated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app