Add like
Add dislike
Add to saved papers

Robust PANI@MXene/GQDs Based Fibre Fabric Electrodes via Microfluidic Wet-Fusing Spinning Chemistry.

Advanced Materials 2023 June 25
Two-dimensional (2D) transition metal titanium carbide (Ti3 C2 Tx ) as a promising candidate material for batteries and supercapacitors has shown excellent electrochemical performance, but it is difficult to meet practical applications because of its poor morphology structure, low mechanical properties, and expensive process. Here, w e propose an applied and efficient method based on microfluidic wet-fusing spinning chemistry (MWSC) to construct hierarchical structure of MXene-based fibre fabrics (MFFs), allowing the availability of MFF electrodes with ultra-strong toughness, high conductivity and easily machinable properties. First, a dot-sheet structure constructed by graphene quantum dots (GQDs) and MXene nanosheets with multi-anchor interaction in the microchannel of a microfluidic device enhances the mechanical strength of MXene fibers; next, the interfused fiber network structure of Ti3 C2 Tx /GQDs fabrics assembled by the MWSC process enhances the deformability of the whole fabrics; finally, the core-shell structure of PANI@Ti3 C2 Tx /GQDs architected by in situ polymerization growth of polyaniline (PANI) nanofibers provides more ion-accessible pathways and sites for kinetic migration and ion accumulation. Through the morphology and microstructure design, this strategy has directive significance to the large-scale preparation of conductive fabric electrodes and provides a viable solution for simultaneously enhancing mechanical strength and electrochemical performance of conductive fabric electrodes. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app